LTR: Linear Cross-Platform Integration of Microarray Data
نویسنده
چکیده
The size and scope of microarray experiments continue to increase. However, datasets generated on different platforms or at different centres contain biases. Improved techniques are needed to remove platform- and batch-specific biases. One experimental control is the replicate hybridization of a subset of samples at each site or on each platform to learn the relationship between the two platforms. To date, no algorithm exists to specifically use this type of control. LTR is a linear-modelling-based algorithm that learns the relationship between different microarray batches from replicate hybridizations. LTR was tested on a new benchmark dataset of 20 samples hybridized to different Affymetrix microarray platforms. Before LTR, the two platforms were significantly different; application of LTR removed this bias. LTR was tested with six separate data pre-processing algorithms, and its effectiveness was independent of the pre-processing algorithm. Sample-size experiments indicate that just three replicate hybridizations can significantly reduce bias. An R library implementing LTR is available.
منابع مشابه
Integration and Reduction of Microarray Gene Expressions Using an Information Theory Approach
The DNA microarray is an important technique that allows researchers to analyze many gene expression data in parallel. Although the data can be more significant if they come out of separate experiments, one of the most challenging phases in the microarray context is the integration of separate expression level datasets that have gathered through different techniques. In this paper, we prese...
متن کاملMicroarray Meta-Analysis and Cross-Platform Normalization: Integrative Genomics for Robust Biomarker Discovery
The diagnostic and prognostic potential of the vast quantity of publicly-available microarray data has driven the development of methods for integrating the data from different microarray platforms. Cross-platform integration, when appropriately implemented, has been shown to improve reproducibility and robustness of gene signature biomarkers. Microarray platform integration can be conceptually...
متن کاملSystematic Evaluation of Three microRNA Profiling Platforms: Microarray, Beads Array, and Quantitative Real-Time PCR Array
BACKGROUND A number of gene-profiling methodologies have been applied to microRNA research. The diversity of the platforms and analytical methods makes the comparison and integration of cross-platform microRNA profiling data challenging. In this study, we systematically analyze three representative microRNA profiling platforms: Locked Nucleic Acid (LNA) microarray, beads array, and TaqMan quant...
متن کاملCross-Platform Microarray Data Normalisation for Regulatory Network Inference
BACKGROUND Inferring Gene Regulatory Networks (GRNs) from time course microarray data suffers from the dimensionality problem created by the short length of available time series compared to the large number of genes in the network. To overcome this, data integration from diverse sources is mandatory. Microarray data from different sources and platforms are publicly available, but integration i...
متن کاملCross-platform Integration of Transcriptomics Data
An increasing number of studies have profiled gene expressions in tumor specimens using distinct microarray platforms and analysis techniques. With the accumulating amount of microarray data, one of the most challenging tasks is to develop robust statistical models to integrate the findings. This article reviews some recent studies on the field. We also study the intensity similarities between ...
متن کامل